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Reasoning about Truth

Q Introduction

Any Al reasoning system with reasonable ambitions must have a way

of describing, specifying or representing situwations, states of
affairs or wot not. Moreover, any Al reasoner that wants to
perform cognitive reasoning, a central aspect of peocple’s

intelligence, must be able to express and reason about the
cognitive attitudes that are taken, by the reasoner and others,
to those representations: whether they are known, believed,
true, provable etc. (all guite distinct notions). Thus, for
example, A may reason ‘What B has told me in the past has usually
been true. B now tells me that he has Jjust heard from C. Hence
I may reasonably believe that B has heard from C.°

In the past several years, we have seen a number of studies
concerning the AI handling of cognitive reasoning. (See, Ffor
example, any number of the papers in Halpern [8461.) These
studies have concentrated on only some cognitive attitudes,
particularly, knowledge and belief. The notion of truth has been
largely ignored; and this despite the fact that it is, arguably,
one of the more central notions. For example, it is one of the
distinguishing characteristics between knowledge and belief; it
is a necessary condition. of adequate proof; etc. The recent
paper by Ferlis [8%], which does address the problem of reasoning
about truth is therefore highly timely. Moreover, it creates yet
another bond between Al and logici for reasoning about truth is
something that has formed a central part of logical
investigations this century.?

The following paper falls into two parts. In the first part I
will describe Perlis® construction and argue that it has certain
inadequacies. In the second part I will describe an approach to
the problem of reasoning about truth which I think is preferable,
and explain why. The approach draws on fairly recent work in a
branch of logic called “paraconsistent logic®. This part of the
paper may therefore serve the function of introducing the reader
to parts of logic, relevant to Al, of which they may not be
awarsa.

1 Semantic Closure

The aim of an Al account of reasoning about truth (and related
‘notions) is to produce some formally tractable way of
representing the legitimate inferences that cognitive reasoners
are wont to make about truth (and its associated notions).
Obviously, the first prerequisite of such an account is to have a
language with a predicate "is true® (which I will write as T).
Syntactically, the predicate is to apply to the representations
of states. We may conveniently take these to be sentences. This
is not only simple and apparently adequate, but is also the
dominant line that logicians have taken since Tarski, and so
allows the application of any established logical technology.

What, however, makes this predicate a ¢truth predicate? I+ we
survey the inferences that characteristicaly involve the notiacn



of truth, we find essentially two. We infer "x is true’ from x,
and x from °*x is true’ (where % is a noun phrase which we can
think of as a name for the the sentence «0. This suggests that
the truth predicate, T, is characterised by the inference scheme:

which iz called by logicians the T-scheme.=®

It is perhaps rather surprising that such a trivial form of
inferermce leads to trouble. Yet it does so. For all we need is
a modicum of self-reference, obtainable in numerous ways, to find
a state which claims that it, itself, is not true, i.e. a state,
B. of the form ~TE. Applying the T-scheme to this, we we obtain:

-~ TR & TR
and hence:
TEASTR

This contradiction, the liar paradox, in itself, might not be too
much . of & problem. After all, is it suwprising that such
counter—-intuitive results follow from consideration of such a
pathological state? Unfortunately, if we then throw in the
principle of standard logic that anything can be deduced from a
contradiction a real problem arises. For the reasoner who has
gone through this process can now infer everything. Which is
slightly too much.

A dodge that logicians have used since the 30°s to avoid this

problem is to separate out the system to whose entities truth is

attributed (the object language) and the system which attributes
truth (the metalanguage), and claim that these must be distinct.

(The construction is due to Tarski, though it should be said, in
fairness to him, that he did not think that ordinary language

reasoning about truth worked in this way.) Thus, the claim that

this very state is not true can not be expressed at all. I+ it

could be, then since it attributes truth, it must be in the
metalanguage, but since it is that to which truth is attributed,

it must be in the object language. Hence this is impossible,

In his paper Perlis argues, quite correctly, that this fix will
not work. Cognitive representations are not intrinsically typed
in this fashion, and any attempt to impose such a partition is
not only artificial, but renders a great deal of perfectly
correct and unproblematical reasoning impossible. This point is
one of which logicians are now acutely aware, and most would
agree that Perlis is quite right. As a result of this awareness,
in recent years logicians have been investigating systems which
aim at semantic closure, that is, systems that can talk about the
truth of their own sentences. Characteristically, these
approaches reject, or at least, weaken the T-scheme. Such
approaches all face well known problems. (See for example Friest
[84]1 and ch 1 of Friest [871, which also discuss the problems of
the Tarskian approach further.) Ferlis produces a novel such
approach, which is npot only simple, but works within the
framework of orthodox logic. To this I now turn.
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2 The T*-Scheme

Ferlis® suggestion is simply to replace the T-scheme by what we
will call the T*-scheme:S

Tx = a* (T*)

where o* is the result of putting x into normal form (either
conjunctive or disiumctive), and then replacing all occurrences
of the form -TR by T-R. Thus, in x*, only atomic sentences are
negated, and atomic sentences containing the truth predicate are
never nagated. Since a formula is logically equivalent to its
normal form, this preserves the T-scheme for those sentences that
do mnot contain T, and even for those that do, provided that the
occurrences of T are not within the scope of a negation.

The T*-gcheme may look a little strange, and is certainly
"unlikely to occur to anyone & priori. The mystique may be
removed, however, by considering its intuitive motivation.

As Perlis describes it, this builds on an idea of kripke. First,
we determine a class of sentences whose truth value may be fixed
in a certain (transfinite) recursive fashion. These include
(properly) all the sentences which do not contain T. Call these
sentences grounded. The negation of a true grounded sentence is
a Ffalse grounded sentence, and vice versa. On the Kripe
construction, sentences that are not grounded are neither true
nor false. The truth predicate applies truly to true sentences,
falsely to false sentences, and neither-true-nor-falsely to
ungrounded sentences. Consequently, Tx always has the same truth
value {(or lack of it) as o '

As an analysis of truth, Kripke®s construction is problematic for
a number of reasons. One is that it does not dispense with the
obiect language / metalanguage distinction. This is because the
fact that a sentence is not true cannot be correctly expressed in
the language itself. For if x is neither true nor false then -Tx
is neither true nor false, not true as required. Moreover, not
only does the T-scheme fail (if & is neither true nor false, S0
is the . instance of the T-scheme for it), but no reasonable
approximation to it seems to be available.

Ferlis® suggestion is, in effect, to define a new classical
interpretation of the language, I, such that the truth conditions
of atomic sentences not containing T are the same as those in the
Kripke interpretation, and those for sentences containing T are:

Ty is true in I iff a is Hripke—true
Tx is false in I otherwise.

It follows that all sentences are either true or false (in I).
Moreover, all Kripke-true sentences are true (in I), and all
Kripke—false sentences are false (as a simple induction shows).
It therefore follows that:

Tx o

is valid in I. The converse, however, is not. For if x is a
true HKripke-neither sentence the consequent is true and the



antecedent is false. Thus, the T-scheme, as is to be expected,

fails in general. However, the T* scheme is valid. I leave the
proof of this as an exercise for those familiar with FKripke’s
construction.? Thus, we s=2e what semantics for the truth

predicate really underlie the T*-scheme.

To see what happens to the liar paradox in these semantics, note
that:

2 (TXAT %) (1)

is true (in I) for every . Next, note that if f is the liar
sentence, the T*-scheme gives:

TR = TaB (=B

Thus, by (1) and classical logic: -~TR, i.e., B. The inference to
TR is, however, blocked. Thus, the contradiction does not arise;
though we do have the rather odd BA-T[. Moreover, I provides a
consistent interpretation of the T*-scheme (and (1)), which
establishes that no other contradictions arise in the theory.®

2 Criticisms of this Account

Though Ferlis® solution to the problem of how to formalise
reasoning concerning truth is neat, it will not work. It is
wrong for both theoretical and practical reasons. Let us start
with the theoretical reasons.

One obljection to Ferlis® construction is provided by the very
fact that the T-scheme does not hold in general. There are a
number of arguments to the effect that the T-scheme must hold for
the truth predicate, that it, indeed, characterises truth. Some
of the arguments are as ancient as Aristotle, and some as modern
as Frege. I will not rehearse them here, since I do not wish
this to be a philosophical paper. {Some of these arguments can
be found in Priest [871, sections 4.2, 4.3.) Let us, therefore,
move on to more technical objections.

One of the weaknesses of Kripke®s construction is that it does
not dispose of the object language / metalanguage distinction, as
I noted above. But FPerlis’® construction is in exactly the same
boat. For there is still no way in Ferlis® construction of
expressing the fact that a sentence is true (in I)! The easiest
way to see this is just to note that if the expressive power of
the language 1is sufficiently strong then, since the logic is
classical, we can apply Tarski’s theorem to show that the set of
true sentences cannot be defined by any formula with one free
variable. Thus Ferlis® own talk of truth (in interpretation I)
must be conceived of as occurring within a distinct metalanguage;
and his claim to have gotten rid of a such a metalanguage (p I1ZX)
is Jjust false.

It follows, in particular, that the formula Tx, does not express
the claim that x is true. In fact, as the semantics make clear,
Tx is true iff o« is Kripke-true; but there are plenty of
sentences that are true but not Kripke-—-true. As we noted, if B
is the liar sentence, BA-TR is true (in I). Thus, B is cne such



formula.® Nor is T even a good approximation to truth (in I,
since some of the most fundamental facts about truth and T
differ: For example, for every sentence either it or its
negation is true; but thers are s such that TavTiox is false.
Similarly, if o is not true then its negation is trus; but thers
are x's for which -~Tx 2 Tax fails. (For counter—examples to both,
take x to be Kripke—-neither.)

As we see, Ferlis’ account is theoretically flawed. It might be
suggested, however, that this doesn’t matter since the point of
the construction i3s3 not & theoretical but & practical one.
Specifically, the aim is to construct a formalisation that can
represent our ordinary reasoning concerning truth; and, it may be
suggested, the T*-gcheme is, in fact, adequate for this. Indeed,
Ferlis provides some nice examples of inferences involving the T-
scheme which are accounted for equally by the T*-scheme.

Unfortunately, the theoretical inadequacies inevitably flow over
into practical ones. Euppose, for example, that someone has the
job of having destroyed all and only those books that contain
some truth, i.e., they act on the command:

it (T & book(y) % occurs_in(x y)) = destroyly)

They learn of book b that it contains inconsistent assertions on
pp 2?1 and 197. They then reason that one of these must be true,

and hence that the bock is to be destroyed. (The formalisation
of this 1is obvious.) The situation might be screwy, but the
reasoning is perfectly sound and correct. Yet it cannot be

represented in Ferlis® approach, Just because, as we noted two
paragraphs back, TouvTax is not available.

Let me give another example, which concerns the failure of the T-
scheme, and which iz a slight modification of one of Perlis® own.
Suppose we are given that anyone who speaks truly is a human.
(Vampires, the other kind of inhabitant of Lower Slobbovia,
always lie.) Two speakers, 0d and Id, are heard to speak as
follows: ‘

Id: Evefything I say is not true.
Od: What Id says is not true.

We can show that Od is human as follows. Suppose that what Id
says is true. Then everything that Id says is not true. Hence,
what Id. says is not true. Hence, by reductio, what Id says is
not true. But 0Od said Jjust that. Hence he spoke truly. He is
therefore a human. I leave a formalisation of this to the
interested reader. The important point to note is Just that
having deduced that what Id says is not true (-~Tw), to then infer
that 0Od spoke the truth (=Tw 2 T-Tw) is precisely an instance of

(the half of) the T-scheme that does not hold on Ferlis® account.
For good measure, we can also infer that Id is human. We have
established that what Id said is not true. Thus, Id has said
something true; hence he is human. Again, this reasoning cannot
be represented in Ferlis® construction, Jjust because the
principle -Tx =z —x fails. Notice alsoc, - that there is nothing
problematic about these reasonings due to inconsistency. The

zsituation is quite consistent. (Suppose that 0d and Id are human
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and that Id has said (at least) one true thing.) There is
thersfore no paradoxical “funny businsss”.

We sze2e that Perlis’ comstruction dogs not allow for correct and
unproblematic cogrnitive reasoning about truth., Henca, it is not
only theoretically incorrect, but also practically inadeguate.

4 A More Adeguate Sclution

I now wish to propose a more adequate sclution. The T-zcheme, we
have seen, must be part of any adeguate representation of
cognitive reasoning. We have also seen that this gives rise to
contradictions. It would appear that this must be accepted.
What nreeds to be rejected is the view that everything may be
deduced From a contradiction. After all, the fact that
contradictions may arise in self-referential situations is not
particularly surprising, or aven worrying. What Is worrying (and
also surprising to someone who has not been indoctrinated by a
course on Frege/Russell logic) is that once & contradiction has
been inferred, everything follows: ex contradictions guodlibet.
If this rule fails then there is no reason why the contradictions
produced by the paradoxes of cognitive reasoning should not be
allowsd to stand: they do no harm.”

Logics where ex contradictione fails are called paraconsistent
logics. These are now familiar to logicians, though to computer
scientists they may be less so. {Some uses have been made of
some of the more elementary relevant logics in the Al literature.
See, e.g. lLevesque [84], Fagin and Halpern [831. Relevant logics
are one kind of paraconsistent logic.) I shall not attempt a
review of such logics here. This can be found in Priest and
Routley [84] and Friest et al [881, ch S5.) Instead, I will
describe one of the simplest and most natural such logics, LP,
(see Friest [79], Friest [87), ch 5) and show how it can be
applied to the present situation. :

LF is obtained by relaxing the classical assumption that
sentences cannot be both true and false. Thus, an interpretation
assigns to each atomic sentences one of the truth values {13
(true and true only), {0} (false and false only), and {1,0%

(both). Truth conditions for non—atomic sentences are given 1in
the familiar classical way, xcept that truth and falsity, now
being independent, must each be considered. Thus, 1let us say

that « is true (under an interpretation) iff 1 is in its truth
value (under that interpretation); similarly, it is false iff Q
is in its truth value. Then, under an interpretation:

X is true iff x is false
-x iz false iff x is true

XA is true iff x is true and B is true
XAR iz false iff o is false or B is false.

Disjunction is treated dually. x=f} is defined as =-avl; o= is
defined as (x=203)A{pla>2x). Quantifiers., as in normal accounts, are
Just thought of as (possibly infinitary) conjunctions and
disjunctions over the domain of interpretation. Az can be

checked, these truth conditions are sufficient to give all



formulas one of the three truth values. Logical consequence is
defined in the standard way. An interpretation is a model of &
formula iff the formula is true in that interpretation; it is a
model af a set of formulas iff it is a model of every formula in
the set; and:

L F x iff every model of § is a model of

It is a simple job to show that this logic 1is paraconsistent.
Take the evaluation that makes p both true and false, and g false
only. This makes pa-p true (and false) and g not true. (LF
might be more familiar to some people as Eleene's strong 3-valued
logic with middle element designated.)

Let me mention, in passing, one variation on these semantics.
This is obtained by allowing any subset of {1,035, including the
empty set, to be a truth value. Otherwise details are the same.
These semantics are Dunn®s semantics for Anderson and Eelnap's
system of zero degree entailment. (Discussed in Belnap [771,
used by Levesque [841.) The main difference between these two
systems is that the three valued system validates the law of
wcluded middle, ov-x, and indeed, all classical tautologies,

whilst the four valued system has no logical truths. In the
present context, I take this to be a distinct advantage for the
three valued system. For the aim is to capture ordinary

reasoning about truth; and the law of excluded middle is an
integral part aof much of this.

LFF has & number of simple proof theories. (For example, a
tableau system is given in Lin [8&61.) I will give a natural
deduction system, sound and complete with respect to these
semantics. This is obtained by modifying a standard natural
deduction system for first order logic (that of Frawitz® [196T51).
The modification is simply to replace the ordinary negation rules
(-1 and -E) by:

= ' LEM
™ XY =X
- B B CON ~x DN
" x

where in CON, x is the only undischarged assumption, and no
application of LEM occurs in its sub-proof. If we delete LEM we
obtain a proof theory for zero degree entailment. If we drop the
restriction on CON, we obtain classical logic. '

Having got the background logic sorted out, teo provide a system
to reason about truth, we merely add the two rules:

T X
TE TI
X T X




where o is a closed formula. Let us call this system of rules
TLF. As it stands, TLFP is consistent (that is, no formula of the
form fRA-B is provable.) This can be proved by rnoting that LF is
consistent, and then observing that TLF can be collapsed into LF
procfs merely be deleting T's and underlinings.) The consistency
is due, however, to the fact that, so far, no self-referential
machinery has been provided. As scon as this is provided,
inconsistency results.. Thus, suppose we can produce a formula,
x, such that we can establish o=-Tx; it is then a simple matter
to deduce xA-uX. I leave this as an elementary exercise.

Although some contradictions are now provable, it would aobviously
be disastrous if all were (i.e. if the system were trivial).
Fortunately, then, it can be shown that this is not the case. It
is™ possible to construct non—-trivial TLF models of first order
arithmetic (which certainly contains enough self-referential
machinery), which show this. See Dowden [BT]. In particular,
anything that is kripke-false is not provable.

The Disiunctive Syllogism and Minimal Inéonsistencx

L]

The inference engine TLF is not subject to the objections 1
brought against Perlis® account. As may easily be checked, the
T-scheme: Tx=x is provable; and because of the T-rules the T
predicate defines the set of truths in any interpretation. Thus,
the account is not subiect to Tarski’s theorem concerning the
indefinability of truth.

There is, however, one important objection. Just because the
logic is paraconsistent, some inferences that are classically
valid are LFP-invalid. Ex contradictione guodlibet, of course,
fails. However, this is well known to follow from simpler and
less intuitively puzzling inferences. One of these must
therefore have to fail. In fact, what fails is the disjunctive

syllogism:
x -=xv / £

detachment for material implication (sometimes called modus
ponens, though this name is appropriate only if 2 is a genuine
implication connective - something the very failure of detachment
gives grounds to doubt). In fact, the disjunctive syllogism is
the only classically valid inference to fail (in the sense that
it this is added to LF classical logic results). Yet it is
reasonable to object to my proposal that the failure shows its
inadequacy, since this inference is a part of our standard
reasoning - about truth or anything else. Indeed, both the
xamples I gave in the previous section apply detachment to the
T-scheme.

There are two ways to meet this obliection, both inveolving
stensions of the inferential machinery of LF. The simplest way
is as follows. Observe that to ocbtain an LF counter-example to
the disijunctive syllogism (or any other classically valid but LP-
invalid inference) we must render the situation inconsistent (by
making some formula both true and false). NMow, it 1is both
plausible and natural to take consistency as a default



aszsumption. (For a defence of this see Friest [871, ch 2.) In
that case it makes sense to implement a non—monotonic logic that
implements this default, and which therefore allows the
disiunctive syllogism provided that no pertinent inconsistency
can be proved.

The simplest way of doing this is as follows. (I outline only
the propositional case. Full details are given in Friest [881.)
If v is a propositional LFP evaluation, let v! be {p : p is
a propositional parameter and paA-p is true under vi. ! is a
measure of the inconsistency of an interpretation. Given a set of
formulas, I, call v a minimally inconsistent (mi) model of L iff
i) v is a model of Z, and ii) if p! is properly contained in !
then p is not a model of L. That consistency is a default
assumption means that we suppose there to be no more

inconsistency than we are forced to suppose; and a natural way of
making this idea precise is simply to restrict ourselves to mi
models. Thus, define the default consequence relation En as
follows: '

L Fm % iff every mi model of L is a model of x

This logic, LPm, is non-monotonic and paraconsistent. (As may
easily be checked {-pvg, p¥ Em Q3 but {pvQa. Pa PAPY Em g.)
It xtends LFP, and gives all classical consequences if the
premises are consistent. (See Friest [88] for proofs.? Hence,
in consistent situations, the disjunctive syllogism and all other
classical inferences are valid. In particular, both of the
gxamples of section three (and all other examples where
inconsistency does not rear its ugly head) can be represented in
terms of LPm, since these situations are consistent. Moreover,
even in inconsistent situations, LPm still allows us to use the
disjunctive syllogism provided only that the inconsistencies do
not "get in the way". (Thus, for example, {p, -pva, rAarl} Fa q.)
Hence LPm validates all classical inferences except  where
inconsistency would make them naturally doubtful anyway.

6 Relevant Logic

The second way of meeting the objection is to extend the language
of LP to include a genuine implication operator, -, which

satisfies (inter aliaz) detachment (modus pornens) - but not the
principle {(xAa-x)=f. The T-scheme can now be formulated using this
connective, and detachment from it becomes possible. The

examples of section I, for example, can be represented in this
WAaY .

A genuine implication operator can be added to LF in numerous
Ways. Relevant logicians, in particular, have studied how to
give the semantics of such an operator; and LF can be embedded in
relevance logics.® As I observed in section four, the semantics
of LF are a fragment of the semantics of zero degree entailment.
One possible approach 1is therefore to work with the extended
semantics, This is unsatisfactory for two reasons. First, one
looses all classical tautoleogies, such as the law of excluded
middle (as I observed); second, and in any case, these semantics
do not allow for nesting the connective +, something one would
surely want. It is better, therefore, to 2mbed LF semantics in



those of a full relevant logic.

This is mot the place to go into the semantics of relevant logics
in detail. {(Details can be found in Dunn [84]1 or Routley et a!

£8z1.) Let me, however, indicate one embedding. One kind of
semantics for relevant logics is based on an algebraic structure
of the form <L, As V. *, =, Fr, where <L, A, v, *» is a De Morgan
lattice, £ 1is a certain filter on the lattice and = is a binary
operation satisfing at least the condition: axzb iff a=b € F. An
algebraic evaluation is a map from formulas into the lattice such
that A, Vv, *, and = are the interpretations of A, v, - and 3,
respectively. Semantic consequence is defined in terms of
membership-of-f preservation under all evaluations. OGiven any LF
. interpretation it is possible to construct such an algebra and
embed the interpretation in it. Conversely, any such algebra can

bew cut down to an LF interpretation. This shows that LFP is

wactly the extensional (i.e., A, v, =) fragment of the relevant
logic. (Full details can be found in the appendix of Friest
[801.)

It is worth observing that many theories based on relevant logics
can be shown to be non-trivial even when the T-scheme is
available. To see this, note that EBrady [881 has shown & large
class of relevant logics to be non-trivial (though inconsistent)
when augmented by the abstraction scheme of naive set theory:

nelysp> € ply/x) ' Abs

where / denctes substitution, and % is free for vy in . Now, let
x be {xjx¥, where % is the least variable, in some standard
enumeration, not occurring in x3 and let Tx be gex. Then by Abs:

Tx & gel{nyjalr &

Hence, any such logic can‘non-trivially model the T-scheme.

7 Einal Observations
The last two sections explain different ways of extending LF so
"that suitable detachments are available. Which of these is
preferable on a given occasion may depend on the context. Having
a genuine implication connective will not take care of a
detachment if the major premise cannot be expressed as a genuine
conditionalj LPm will (consistency permitting). But LFm will
not allow one to express an indefeazible connection between x and
R (i.e., ocne where one can always get from x to £); having a
genuine conditional will. Maybe, on occasions, it will be
necessary to use both of these devices, though I have no example
of this to offer. At any rate, I take it that, between them,
they overcome the cbiection. Let me finish with three pertinent
but miscellaneocus comments. ’

a) Tﬁe approach to reasoning about truth that I have advocated
accepts the T-scheme and uses a paraconsistent logic  to
accommodate the consequent inconsistencies. It might be

suggested that another possible line is to accept the T-scheme,
but accommodate the inconsistencies via some other mechanism, for
example, by applying truth-maintenance techniques. {(See, e.4,
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Doyle [791.) Thus, for example, starting with an instance of the
T-scheme Tx=-Tx marked IN, the THMS would mark it OUT as socon as
it noted that from it and it alone xa-x follows. ‘

It would be hubris to claim that no approach like this can be
made to work. However, any such approach based on classical
logic faces a pretty devastating obljection based on Curry
paradoxes. See Friest [B0] or Priest [B87], ch &.) Suppose that
the connective = satisfies both detachment and absorption
(x=(x=3) /7 x=03). Suppose that we have suitable self-referential
machinery, and thus, for an arbitrary formula, B, can construct a
formula Tx=sf whose name is x. The instance of the T-scheme for
is:  Toe(Tax={). Now, absorption gives Ta=f; whence detachment
from right to left gives Tx. Futting these together, again by
detachment, gives fi. Thus an arbitrary formula follows from the
T-scheme, even without the help of ex contradictione. Thus,
running a TMS on a set of assumptions that includes the T-scheme
would be just like running a TMS on the set of assumptions that
contains all formulas. The results would be Jdust as arbitrary,
and Just as meaningless. They would reflect nothing but the
order of backtracking.

Just for the record, it is worth noting that LF and certain
relevant logics do not fall foul of Curry paradoxes, as the non-
triviality results cited above show. This is because LF does
not wvalidate detachment for material implication, and suitable
relevant 1logics do not contain absorption (though some relevant
logics do). There is as yet no non—triviality proof for LFPm with
the T-rules, but the Curry arguments certainly break down.
Although {Tx=(Tx2p)3 Em p, {(Tax=(Tx2p), TR=(TR>-p)> gives neither
p nor -p in LFa.?

b) The second observation concerns other paradoxes of cognitive
reasoning. It is not only truth that is known to lead to
paradoxes, but plausible conditions on belief, knowledge, proof
and other intensional operators similarly lead to contradictions.
(See, 2.g., Asher and Famp [B4], Thomason [B8é] for discussion and
references.) It would take me too far afield in this paper to
discuss these. But the fact that there is little agreement about
how to handle them attests to the fact that all proposed
solutions are problematic. Here I note only that these paradoxes
in cognitive reasoning can be handled in exactly the same way as
those concerning truth: we simply add the appropriate rules of
proof for reasoning about knowledge, belief etc., and allow the
contradictions to stand, since they can do no harm.

) The final comment concerns the automated implementation of
the systems 1 have described. Though it is simple encugh to
write algorithms for a number of these (for example, a proof-tree-
search will do for LF, and a model search will do for
propositional LFa.) the problem of efficient algorithms remains to
be investigated. Only for relevant logics has a start been made
on this. Some Details of this can be found in Thistlewaite ¢ al
{841 and [871, and EBollen [8561.1°
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Notes

1. As will prohably be clear from the following paper, I write
from the logicians® side of this partition; however, I hope to
succeed, at least partly, in crossing it.

2. Since various notions of implication will play & role in this
paper, let me comment briefly on my notation. I will use = as a
generic implication connective (where its precise properties are
not at issue); o as material implication (always defined using
negation and disjunction); and - as & Lona fide implication
guaranteed to satify at least modus ponens. Their respective bi-
implications are &, = and &,

-Z. In practice, Ferlis alsoc assumes other principles verified by
tha model construction to follow, such as (1) below, but which do
not, as far as I can see, follow from T*.

4, Hint: First shaw the result for « in normal form. The only
non-trivial part of this argument concerns negated T sentences;
but here one can use the fact that TR is Kripke—true iff Tof is
bEripke—true. Next, observe that in the Kleene strong three
valued logic x is equivalent to its normal form x°. Hence, Tx is
equivalent to Tx”. Finally, observe that x’* is Jjust «x*,

‘5. The model-construction in Ferlis® paper, taken from Gilmore,
is somewhat different, but the final model is the same. Again,
the proof is not difficult to find, and I leave it as an
gxercise. Hint: show by induction that the extension of the

truth predicate is the same at each level of the Kripke and
Gilmcre hierarchies.

6. Ferlis, in effect, admits that his truth predicate Jjust means
Kripke-true:  *...TLruel is to be taken to mean Kripke’s sense,
i.e., grounded and true...’ (p 312).

7. In fact, it has been argued quite independently of the
paradoxes of cognitive reasoning, that inference engines suitable

for reasoning from complex data should be paraconsistent. (See,
e.g. Belmap [77].) For any but the most simplistic data bases
and rule systems are liable to be inconsistent. Further, since

there 4is no decision procedure for inconsistency, there is no
general and effective way that the inconsistencies can be weeded
out. We therefore have to live with them. :

8. A suitable implication operator does not have to be relevant,
however. See Friest [871, ch é.

9. The following are mi-model counter-examples for p and -p
respectivel y: p false only, TQ true only, Tx both; p true only,
Tx true only, TR both.

10, I would like to thank two anconymous referees of Artificial
Intelligence for their helpful comments on a first draft of this
paper. The paper was rewritten while I was a Froject Visitor at

the Automated Reasoning Froject, Australian National University.
I would also like to express my thanks to them.
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